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Abstract

The performing spectral method, developed by Haldenwang et al. [J. Comput. Phys. 55 (1984) 115], to solve multi-

dimensional Helmholtz equations, associated to mixed boundary conditions with constant coefficients, is extended to

boundary conditions mixing a first order normal derivative with a second order tangential derivative. The accuracy of

the proposed algorithm is evaluated on two test cases for which analytical solutions exist: an academic problem and a

physical configuration including an interface with shear viscosity. The procedure is also applied to the research of the

Rayleigh–B�enard instability thresholds in closed cavities with thin diffusive walls.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The Navier–Stokes and energy equations associated with boundary conditions mixing a normal deriv-

ative to a second order tangential derivative are encountered in many physical systems such as fluids

confined within walls of arbitrary thermal conductivity [5] or in flows involving an interface with shear

viscosity [10]. This type of condition arises whenever a boundary is subjected to a coupling between flux and
intrinsic interfacial dissipation of some physical quantity.

Conservation equations are often transformed into Helmholtz problems which can be solved using a

direct Chebyshev collocation method as developed by Dang-Vu and Delcarte [8]. This method leads to the

resolution of quasi-tridiagonal systems. Though avoiding any iterative algorithm, and offering a very ac-

curate solution, this procedure is slower than the one proposed by Haidvogel and Zang [4] in the case of

time dependent problems for which a Helmholtz equation has to be solved at each time step. Haldenwang
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et al. [6] have proposed a performing 3D spectral solver for the Helmholtz equation in case of Dirichlet,

Neumann or Robin (mixed) boundary conditions with constant coefficients. This method, based on suc-

cessive diagonalisations of the second order derivatives of the Helmholtz operator, allows to reduce effi-
ciently the computing time and is relevant to time dependent problems. In this paper, we propose an

extension of this method to boundary conditions mixing a normal derivative to a second order tangential

derivative.

The general formulation of the method is presented in Section 2, the corresponding algorithm is detailed

in Section 3, and validated in Section 4 through comparisons with analytical solutions of mathematical and

physical configurations. Results of the literature on the thermal stability of a fluid contained in a rectan-

gular enclosure heated from below are reproduced and extended. The CPU cost of the proposed algorithm

is estimated on this time dependent problem. Section 5 presents the conclusions.
2. Description of the problem and method of solution

We consider the 2D Helmholtz problem in Cartesian coordinates

o2u
ox2

þ o2u
oz2

� au ¼ f ; x; z;2 ½�1; 1�; a > 0; ð1Þ

where u and f are, respectively, the solution and a source term, x and z being the horizontal and vertical

directions. The following boundary conditions are imposed:

u 2 oX a1� o2u
oz2 þ b1�

ou
ox ¼ c1�ðzÞ at x ¼ �1 ðaÞ

a2�u ¼ c2�ðxÞ at z ¼ �1 ðbÞ:

�
ð2Þ

a1�, a2� and b1� are constant (Fig. 1).

For clarity’s sake, the method is developed in case of Dirichlet conditions along one set of parallel

boundaries with c2� depending on the position on the boundary. Its extension to Neumann or Robin

conditions and to 3D configurations is then explained.
Fig. 1. 2D scalar Helmholtz problem with Dirichlet conditions at z¼�1 and a second tangential derivative mixed with a Neumann

condition at x¼�1.
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The extension by Haldewang et al. [6] of the diagonalisation technique proposed by Haidvogel and Zang

[4] to the case of Robin conditions is based on the reduction of the system, resulting from a Chebyshev

collocation approximation, by algebraic elimination of the boundary conditions. The algorithm then
proceeds to successive diagonalisations in each direction of the system reduced to the inner domain, the

eigenvalues of the total operator being the sum of the eigenvalues of three 1D operators.

If the coefficients in the Robin conditions are space dependent, the elimination process leads to a

modified non-tensoriable Helmholtz operator. Nevertheless a solution may still be computed with spectral

accuracy using an iterative algorithm as proposed by Delcarte et al. [11].

When a boundary condition involves normal as well as tangential derivatives, a reduction of the system

as done in [6] or [11] does not allow successive diagonalisations because each boundary point is then

coupled to each inner point, while in Haldenwang’s case, one boundary point is at most coupled to the
inner points along the normal direction to the boundary. Of course, a solution can then consist of con-

structing explicitly the total Helmholtz operator and calculating its inverse. Though it preserves the spectral

accuracy, it is both costly in memory and computation time.

The basic idea of our method is to transform the mixed condition into a Robin condition in finding f�
functions such that

a1�
o2u
oz2

����
x¼�1

¼ f�ðzÞujx¼�1: ð3Þ

Eq. (3) is a well-known eigenvalue problem. This suggests rewriting the problem in the basis of the ei-

genvectors of o2=oz2. Nevertheless, it is necessary, first, to remove the zero eigenvalues of the second order

derivative matrix by cancelling out the utmost points of the horizontal boundaries.

The algorithm proposed below is based on these considerations. As it will be shown, compared with
Haldenwang et al. [6] procedure, it preserves the spectral accuracy with a reasonable memory cost increase

and a computation time of the same order.
3. The algorithm

3.1. The discrete problem

We use a Chebyshev collocation spectral method on a Gauss–Lobatto grid [2,3]. The collocation points

along~ex and~ez are given by

xi ¼ � cos
ip
Nx

� �
; i 2 f0; . . . ;Nxg; ð4aÞ

zj ¼ � cos
jp
Nz

� �
; j 2 f0; . . . ;Nzg: ð4bÞ

The discrete Helmholtz problem readsXNx

k¼0

ðD2
xÞikukj þ

XNz

l¼0

ðD2
z Þjluil � auij ¼ fij; i 2 f0; . . . ;Nxg and j 2 f0; . . . ;Nzg; ð5Þ

associated with the set of boundary conditions:

u 2 oX
a1�
PNz

l¼0ðD2
z Þjl ujNx

0
l þ b1�

PNx
k¼0ðDxÞjNx

0
k ukj ¼ c1�ðjÞ for j 2 f0; . . . ;Nzg ðaÞ

a2�uijNz
0
¼ c2�ðiÞ for i 2 f0; . . . ;Nxg ðbÞ

(
ð6Þ
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with c1�ðjÞ ¼ c1�ðzjÞ and c2�ðiÞ ¼ c2�ðxiÞ.Dx
z
denotes the first derivative spectral operator with respect to x

z

� �
and D2

x
z
the second derivative operator ½D2

x
z
�ij ¼

P
k½Dx

z
�ik � ½Dx

z
�kj.

3.2. The procedure

Step 1: Elimination of the Dirichlet boundary conditions.

In the configuration here considered, we eliminate the horizontal boundaries (6)b. The discrete Helm-

holtz equation becomes

XNx

k¼0

ðD2
xÞik ukj þ

XNz�1

l¼1

ðD2
z Þjluil � auij ¼ f 0

ij; i 2 f0; . . . ;Nxg; j 2 f1; . . . ;Nz � 1g

with f 0
ij ¼ fij � fðD2

z Þj0 ui0 þ ðD2
z ÞjNz

uiNzg and uijNz
0
¼ c2�ðiÞ

a2�
: ð7Þ

The remaining boundary conditions are written as

a1�
XNz�1

l¼1

ðD2
z ÞjlujNx

0
l þ b1�

XNx

k¼0

ðDxÞjNx
0

kukj ¼ c1�ðjÞ � fðD2
z Þj0ujNx

0
0 þ ðD2

z ÞjNz
ujNx

0
Nz
g; j 2 f1; . . . ;Nz � 1g:

ð8Þ

Step 2: Change of basis.

Let us define ðD2
z Þint as the inner part of ðD2

z Þ: ½ðD2
z Þint�jl ¼ ðD2

z Þjl for j; l 2 f1; . . . ;Nz � 1g. The reduced

Helmholtz equation and the associated boundary conditions are now expressed in the basis of the eigen-
vectors of ðD2

z Þint. Mz being the matrix of the eigenvectors of ðD2
z Þint

M�1
z ðD2

z ÞintMz ¼ K2
z ; ðK2

z Þjl ¼ djlðkzÞj; j 2 f1; . . . ;Nz � 1g:

We introduce the following notations for i 2 f0; . . . ;Nxg and j 2 f1; . . . ;Nz � 1g:

~uij ¼
XNz�1

l¼1

ðM�1
z Þjluil; ~f 0

ij ¼
XNz�1

l¼1

ðM�1
z Þjlf 0

il;

~a1�ðjÞ ¼ a1�:ðkzÞj; ~b1� ¼ b1�;

~c01�ðjÞ ¼
XNz�1

l¼1

ðM�1
z Þjl c1�ðlÞ

h
� fðD2

z Þl0ujNx
0

0 þ ðD2
z ÞlNz

ujNx
0

Nz
g
i
:

In this new basis, the discretised Helmholtz problem, for i 2 f0; . . . ;Nxg and j 2 f1; . . . ;Nz � 1g, reads

XNx

k¼0

ðD2
xÞik~ukj þ

XNz�1

l¼1

ðK2
z Þjl~uil � a~uij ¼ ~f 0

ij ð9Þ

with the mixed boundary conditions

~a1�ðjÞ~ujNx
0

j þ ~b1�

XNx

k¼0

ðDxÞjNx
0

k~ukj ¼ ~c01�ðjÞ: ð10Þ

Step 3: Elimination of the mixed conditions.

To eliminate the boundary points ~u0j and ~uNxj, we express them in terms of the inner points thanks to the

two mixed boundary conditions
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ð~a1�ðjÞ þ ~b1�ðDxÞ00Þ~u0j þ ~b1�

XNx�1

k¼1

ðDxÞ0k~ukj þ ~b1�ðDxÞ0Nx
~uNxj ¼ ~c01�ðjÞ; ð11Þ
ð~a1þðjÞ þ ~b1þðDxÞNxNx
Þ~uNxj þ ~b1þ

XNx�1

k¼1

ðDxÞNxk
~ukj þ ~b1þðDxÞNx0

~u0j ¼ ~c01þðjÞ: ð12Þ

The resolution of the linear system
ð11Þ
ð12Þ

�
leads to the following relations:

~u0j ¼
XNx�1

k¼1

~m�jk~ukj þ ~l�
j ; ð13aÞ

~uNxj ¼
XNx�1

k¼1

~mþjk~ukj þ ~lþ
j ; ð13bÞ

the coefficients, ~m�jk, ~m
þ
jk and ~l�

j , ~l
þ
j , are given in Appendix A.1. Inserting (13) in Eq. (9), it results a 2D

Helmholtz equation on the inner points, i 2 f1; . . . ;Nx � 1g, j 2 f1; . . . ;Nz � 1g

XNx�1

k¼1

ðD2
xÞik

n
þ ðD2

xÞi0~m�jk þ ðD2
xÞiNx

~mþjk

o
~ukj þ

XNz�1

l¼1

ðK2
z Þjl~uil � a~uij ¼ ~fij � ðD2

xÞi0~l�
j � ðD2

xÞiNx
~lþ
j : ð14Þ

As a matter of fact, Eq. (14) can be seen as a set of ðNz�1Þ 1D modified Helmholtz equations, in the

horizontal direction, if we consider that the Helmholtz constants are now equal to a0j ¼ a� ðkzÞj.
Step 4: Diagonalisation.

In order to diagonalise the Helmholtz operator ~H, i.e. the left part of Eq. (14), it is expressed as a sum of

two operators: ~Hs, the tensoriable part of the total operator and ~Hcl, coming from the elimination of the

mixed boundary conditions, which is not tensoriable. ~Hs can be written using tensor notation

~Hs ¼ ðD2
xÞint � Iz þ Ix � ðK2

z Þ � aIx � Iz: ð15Þ

For ~Hcl, the following notation is used:

ð ~HclÞikðjÞ ¼ ðD2
xÞi0~m�jk þ ðD2

xÞiNx
~mþjk: ð16Þ

The dependence of ~Hcl on j results in the loss of tensoriability of the Hemholtz operator. However, both
~Hs and ~Hcl are block diagonal as displayed in Appendix A.2. Thus ~H is block diagonal as a sum of two

block diagonal matrices and each block can be independently diagonalised.

Step 5: To solve for u.
~HðjÞ being the jth block of ~H, the matrix of its eigenvectors, ~MxðjÞ, is such that

~MxðjÞ�1 ~HðjÞ ~MxðjÞ ¼ ~KxðjÞ ð17Þ

with ð~KxÞikðjÞ ¼ dik~kkj. The change of basis applied to ~u and ~f is performed as follows:

~~uij ¼
XNx�1

k¼1

ð ~MxðjÞ�1Þik~ukj and
~~f ij ¼

XNx�1

k¼1

ð ~MxðjÞ�1Þik~fkj:

The solution is then directly given by the relation: ~~uij ¼ ~~f ij=ð~kij � aÞ.
It must be emphasised that the order of the steps is critical, and that independently diagonalising each

block, in step 4, requires that the reduced second order operators are identical in the Helmholtz equation
and the mixed boundary conditions.
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This procedure is heavier on memory compared to Haldenwang et al.’s algorithm. Indeed, the change of

basis here requires to store the ðNx � 1Þ2 elements of each Mz and M�1
z matrices and the ðNz � 1Þ2 elements

of the fMx and fMx
�1

matrices, i.e. 2� ðNx � 1Þ2 � ðNz � 1Þ þ 2� ðNz � 1Þ2 elements instead of
2� ðNx � 1Þ2 þ 2� ðNz � 1Þ2 elements of 4 matrices. Nevertheless the number of operations performed for

diagonalising the operator will be virtually the same as for successive diagonalisations, within a permu-

tation of the solution field’s indices. When compared to the inversion of the total operator, the proposed

procedure is cheaper in memory and in computation time as it will be show in Section 4.3. Referring to step

4 of the algorithm, we shall now designate it as: blocks diagonalisation.
3.3. Extensions of the procedure

3.3.1. Neumann and Robin conditions

If the boundary conditions at z ¼ �1 are ou=oz ¼ cðxÞ, the u values on the boundaries will be expressed

as linear combinations of the inner values as follows:

ui0 ¼
XNz�1

l¼1

~m�l uil þ c�i ; ð18aÞ

uiNz ¼
XNz�1

l¼1

~mþl uil þ cþi ð18bÞ

and inserted in (7) and (8) (the coefficients ~m�l , ~m
þ
l , c

�
i , c

þ
i are obtained as solutions of a linear system). The

extension to Robin conditions is straightforward.
3.3.2. 3D configurations

The procedure can easily be adapted to 3D Cartesian configurations with mixed boundary conditions on

one pair of parallel faces. Extension to 3D cylindrical configurations with mixed boundary conditions on

the lateral surface and classical boundary conditions (Dirichlet, Neumann, Robin) on the extremities is
briefly described in Appendix A.3. In that geometry, Gauss–Radau collocation points are used so as not to

impose boundary condition on the central axis [2].

The 3D procedure can be resumed as follows:

Step 1: reduction of the discretised system by taking into account all the classical boundary conditions.

Step 2: changes of basis in order to diagonalise all the second derivative operators in the normal directions

to these boundaries.

Step 3: reduction of the system by using the mixed boundary conditions.

Step 4: diagonalisation of the resulting Helmholtz operator
~~H ¼ ~~Hs þ ~~Hcl, where

~~Hs ¼ ððD2
xÞÞint � Iy � Iz þ Ix � Iy � ðK2

z Þ þ Ix � ðK2
yÞ � Iz � aIx � Iy � Iz: ð19Þ

and

ð ~~HclÞikðjlÞ ¼ ðD2
xÞi0~~m

�
jkl þ ðD2

xÞiNx
~~mþjkl: ð20Þ

Step 5: to solve for u.

The storage cost is equal to the 2D storage cost multiplied by the number of points in the

third direction. The computation cost remains very likely to the cost of a successive diagonalisation

procedure.
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4. Validation

4.1. An analytical test case

The algorithm is now applied to the Helmholtz problem (1) and (2) where the source, f , and the co-

efficients, a1�, b1�, c1�ðzÞ, a2�, b2�, c2�ðxÞ, are given by

f ¼ �ð2p2 þ aÞðsinðpxÞ sinðpzÞ þ cosðpxÞ cosðpzÞÞ � a C;

a1� ¼ � 1

2
;

b1� ¼ �1;

c1�ðzÞ ¼ � p2

2
cosðpzÞ � p sinðpzÞ;

a2� ¼ 1;

c2�ðxÞ ¼ � cosðpxÞ þ C:

ð21Þ

Of course, the chosen coefficients insure the compatibility of the boundary conditions in the corners of the

domain. The analytical solution is the trigonometric function of x and z:

u ¼ sinðpxÞ sinðpzÞ þ cosðpxÞ cosðpzÞ þ C: ð22Þ

This function does not cancel on the boundaries neither its normal derivatives to the boundaries. The

constant C, related to the constant mode, is fixed to a non-zero value (here to 10) so as to avoid any

cancellation of u, given rise to some problem in the calculation of the relative error defined as follows:

e ¼ max
x;z2X

ucpðx; zÞ � uanðx; zÞ
uanðx; zÞ

���� ����;
where ucp and uan, respectively, are the computed and the analytical solutions.

Fig. 2 shows the evolution of the error as a function of the grid refinement, for two values of the

Helmholtz constant a. The curves show very similar behaviours which can be extended to any positive value

of a in particular to Poisson equation (a ¼ 0). When refining the grid (from 5� 5 to �20� 20 nodes), the
error rapidly and monotonically decreases down to 10�14 which corresponds to the convergence of the

spectral accuracy with the number of modes. For finer grids, the error now increases (up to 10�11 for 2502

points) due to the accumulation of round-off errors in the preprocessing calculation of the eigenvalues and

eigenvectors as already mentioned by Haidvogel and Zang [4] and Haldenwang et al. [6].
4.2. An interface with surface viscosity

We now consider the problem of an opened channel of infinite extension containing two viscous in-
compressible fluids (I and II). The bottom of the channel is moving steadily in the longitudinal direction,

carrying on the fluids which are separated by a plane interface with negligible mass. This configuration has

been introduced by Prud’homme and Gatignol [13] to study the effect of an interface of two superposed

immiscible fluids with constant shear surface viscosity (see Fig. 3). Assuming that the upper fluid is of

negligible viscosity in comparison to the other and that the flow is lengthwise, laminar, and steady, the

following equations for the velocity ~V I ¼ Vx~ex þ Vy~ey þ Vz~ez can be written as

Vx ¼ Vz ¼ 0;
o2Vy
ox2

þ o2Vy
oz2

¼ 0: ð23Þ



−h/2 y

Fluid I

z

x

+h/2

+a/2

−a/2Fluid II
O

Fig. 3. Driven opened boat with interfacial viscosity.
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Fig. 2. Error of the computed solution versus the number N of collocation points in each direction, N ¼ Nx ¼ Nz (square mesh), on a

logarithmic scale.
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Defining A ¼ h=a, the aspect ratio, the boundary conditions are:

on the vertical walls; Vy ¼ 0 at x ¼ � 1

2
; ð24aÞ

on the free surface;
oVy
oz

¼ Vi
o2Vy
ox2

at z ¼ þA
2
; ð24bÞ

and on the bottom; Vy ¼ 1 at z ¼ �A
2
; ð24cÞ

where Vi ¼ �=ðl1aÞ, � and l1 being the interface shear viscosity and fluid I viscosity, respectively. Vi and A
have been fixed to 0:01 and 1. The solution can be analytically derived as a Fourier expansion:



42 S. Nguyen, C. Delcarte / Journal of Computational Physics 200 (2004) 34–49
Vyðx; zÞ ¼ V0
X1
m¼1

4

mp
Chðmpðz� A

2
ÞÞ � Vi mpShðmpðz� A

2
ÞÞ

ChðmpAÞ þ Vi mpShðmpAÞ Sin mp
xþ 1

2

� �
: ð25Þ

Due to the singularities of the boundary conditions at ðx; zÞ ¼ ð�1=2;�A=2Þ, the computation of (25) re-

quires 	5� 105 modes to satisfy the top boundary condition with an error of 10�12 whereas 	107 modes

are necessary to satisfy the bottom boundary condition with an error of 10�4.

Fig. 4 displays the relative error, Evsl ¼ jðVcfsðNÞ � Vcfsð72ÞÞ=Vcfsð72Þj, between the velocity at the center

of the free surface, VcfsðNÞ, calculated with N Chebyshev modes in each direction and the chosen reference
value, Vcfsð72Þ, calculated with 72 modes in each direction. The error decreases as 	OðN 2Þ�4

. The deteri-

oration of the convergence rate is clearly related to the corner singularities as already discussed by Hai-

dvogel and Zang [4] for a similar problem.

4.3. A thermal configuration

The aim of this section is twice: to estimate the CPU cost of our algorithm and to compare its results

with those of the literature on a stability thresholds determination which requires high precision.
A large amount of work has been done on the classical B�enard problem in a closed cavity. Most of which

concerns a volume of fluid bounded above and below by isothermal surfaces and laterally by adiabatic

surfaces. In a few papers, the effect of conducting lateral boundaries on the stability of the fluid is studied

[5].

The physical case here considered consists of a 2D rectangular cavity filled with an incompressible

Boussinesq viscous fluid of thermal diffusivity jf and kinematic viscosity m (see Fig. 5). The perfectly

conducting top and bottom surfaces are isothermal with a temperature difference equal to
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Fig. 4. Evolution of the relative error for N 2 ½1; 60�, the results at N ¼ 72 being chosen as reference values.



Fig. 5. The thermal configuration.
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DT ¼ Tbottom � Ttop > 0. The lateral walls are composed of a thin layer of conducting material which is

isolated outside.

The problem is made non-dimensional by choosing the characteristic length, time, temperature and

pressure scales, respectively, equal to the height of the cavity H , the thermal time tref ¼ H 2=jf ,

h ¼ ðT � TrÞ=DT with Tr the mean temperature, and pref ¼ q0j
2
fH

�2, with q0 the fluid density at temperature

Tr. Defining the aspect ratio A ¼ L=H , the Prandtl number Pr ¼ m=jf , and the Rayleigh number

Ra ¼ gbDTH 3=ðmjfÞ, with g the gravitational acceleration and b the thermal expansion coefficient at tem-
perature Tr, the Navier–Stokes and energy equations under Boussinesq approximation are:

ou
ot

þ u
ou
ox

þ w
ou
oz

¼ � op
ox

þ Pr
o2

ox2

�
þ o2

oz2

�
u; ð26aÞ

ow
ot

þ u
ow
ox

þ w
ow
oz

¼ � op
oz

þ Pr
o2

ox2

�
þ o2

oz2

�
wþ Ra � Pr � h; ð26bÞ

oh
ot

þ u
oh
ox

þ w
oh
oz

¼ o2

ox2

�
þ o2

oz2

�
h; ð26cÞ

ou
ox

þ ov
oz

¼ 0: ð26dÞ

These conservation equations are completed with the boundary conditions:

u ¼ w ¼ 0 on all the surfaces; ð27aÞ
hðx;�A=2Þ ¼ 1=2; hðx;A=2Þ ¼ �1=2; ð27bÞ

and, as proposed by Buell and Catton [5], to take into account the heat conduction in the lateral wall, the

following condition, mixing normal and tangential derivatives, is introduced:

oh
ox

¼ �Cw

o2h
oz2

at x ¼ �A=2; ð27cÞ
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where Cw ¼ ðjwdwÞ=ðjfHÞ is the wall admittance with jw the wall conductivity and dw the wall thickness

with dw=H 
 1. If Cw ¼ 0, the wall is adiabatic; if Cw ! 1, it is perfectly conducting. A and Pr are, re-

spectively, fixed to 1 and 0.71 in this study.
The expansion of the velocity and temperature fields in Chebyshev series leads to a system of ordinary

temporal differential equations which is solved by using a second order finite difference time-stepping

scheme with an implicit treatment of the diffusion terms, the others being explicitly evaluated. A projection–

diffusion algorithm, described at length in [9,12], is used to uncouple the velocity and pressure fields.

4.3.1. Computational time costs comparison

As a measure of the efficiency of our algorithm, we computed 2000 time steps in a Rayleigh–B�enard
configuration with lateral adiabatic walls (Cw ¼ 0), for a variety of mesh refinements, and compared the
elapsed times with those obtained by successive diagonalisations and direct inversion. The results of these

simulations are presented in Table 1, in seconds. For each algorithm, the first column yields the initiali-

sation time (calculation of the operators, diagonalisation, inversion, etc.), the second yields the elapsed time

after 2000 iterations of the temporal scheme solving Navier–Stokes and energy equations.

It appears that the initialisation and time iterations parts both are very costly in the direct inversion

method. The blocks diagonalisation algorithm exhibits a behaviour in agreement with our expectations: the

initialisation step is over ten times slower than for successive diagonalisations but is very efficient compared

to direct inversion. The temporal part costs are of the same order in the diagonalisation procedures, the
differences can be attributed to the implementation because the code using successive diagonalisations has

been optimised whereas our code is still perfectible. It must be emphasised that direct inversion is limited to

small numbers of grid points whereas blocks diagonalisation allows to work with reasonable meshes (of

course the maximum number of grid points depends on the available memory of the computer).

4.3.2. Convection thresholds as a benchmark problem

The symmetries of our configuration (A ¼ 1) are such that the transition between the conductive and the

convective flows in Rayleigh–B�enard configuration corresponds to a super-critical pitchfork bifurcation of
the steady state at a critical Rayleigh value, Rac. The linear stability theory predicts a linear evolution of

infinitesimal perturbations of the steady state near the bifurcation threshold. The growth rates of the ve-

locity components and the temperature, due to small initial perturbations of the steady state have been

calculated at three points of the cavity for Ra values near Rac. The global growth rates have been taken as

the mean value of each set of these 9 values. The critical Rayleigh value has then been obtained through a

linear regression calculated on, at least, 5 mean values of growth rates of the order 10�2. Fig. 6 gives Rac as
a function of the wall coefficient Cw. At Cw ¼ 0, Rac ¼ 2584:99 which agrees with the value Rac ¼ 2585:03
obtained by Platten and Legros [7]. The threshold value increases with Cw on the interval Cw 2 ð0:08; 9Þ.
The value Rac ¼ 5010:30, calculated for Cw ¼ 10�3, can be compared to the value Rac ¼ 5035 obtained

by Davis [1] for perfectly conducting walls but on a 3D configuration; it is the only value found in the

literature.
Table 1

Computation times in second, for a Rayleigh–B�enard problem with adiabatic lateral walls, at Ra ¼ 3500, Pr ¼ 0:71, dt ¼ 1� 10�3

Mesh size Tensoriable problem successive

diagonalisations

Blocks diagonalisation Helmholtz operator direct

inversion

15� 15 0,007 60,233 0,151 65,958 2,607 80,500

30� 30 0,395 409,875 1,516 451,951 185,572 761,260

50� 50 1,618 1790,656 9,619 1990,806 6804,348 4488,353

100� 100 11,803 13748,125 128,036 15396,710 – –

150� 150 39,020 45823,149 612,230 51242,103 – –
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Fig. 6. The critical Rayleigh number, Rac, as a function of the non-dimensional wall coefficient Cw (in log/log scales).
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5. Conclusion

We have extended the successive diagonalisation technique solving the Helmholtz problem with ho-

mogeneous Robin boundary conditions to the case of boundary conditions mixing a second order tan-

gential derivative with a first order normal derivative. The algorithm does not increase the computation

time but requires more memory storage. The spectral accuracy is preserved. The application of the pro-

cedure to the determination of the transition thresholds between the conductive and convective regimes of
an incompressible fluid in a rectangular cavity heated from below, with partially conducting vertical walls,

has shown the dependence of the critical Rayleigh number on the wall conductivity.
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Appendix A

A.1. Appendix 1

To solve the linear system (A.1):

ð~a1�ðjÞ þ ~b1�ðDxÞ00Þ~u0j þ ~b1�

XNx�1

k¼1

ðDxÞ0k~ukj þ ~b1�ðDxÞ0Nx
~uNxj ¼ ~c01�ðjÞ; ðA:1aÞ
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ð~a1þðjÞ þ ~b1þðDxÞNxNx
Þ~uNxj þ ~b1þ

XNx�1

k¼1

ðDxÞNxk
~ukj þ ~b1þðDxÞNx0

~u0j ¼ ~c01þðjÞ ðA:1bÞ

in ~u0j, ~uNxj is straightforward.

Through the following combinations of the two set of equations:

ð~a1þðjÞ þ ~b1þðDxÞNxNx
Þ � ðA:1aÞ–~b1�ðDxÞ0Nx

� ðA:1bÞ;
~b1þðDxÞNx0

� ðA:1aÞ–ð~a1�ðjÞ þ ~b1�ðDxÞ00Þ � ðA:1bÞ

(

we obtain:

XNx�1

k¼1

fð~a1þðjÞ þ ~b1þðDxÞNxNx
Þð~b1�ðDxÞ0kÞ � ð~b1�ðDxÞ0Nx

Þð~b1þðDxÞNxk
Þg~ukj

þ fð~a1þðjÞ þ ~b1þðDxÞNxNx
Þð~a1�ðjÞ þ ~b1�ðDxÞ00Þ � ð~b1�ðDxÞ0Nx

Þð~b1þðDxÞNx0
Þg~u0j

¼ ð~a1þðjÞ þ ~b1þðDxÞNxNx
Þ~c01�ðjÞ � ð~b1�ðDxÞ0Nx

Þ~c01þðjÞ;XNx�1

k¼1

fð~b1þðDxÞNx0
Þð~b1�ðDxÞ0kÞ � ð~a1�ðjÞ þ ~b1�ðDxÞ00Þð~b1þðDxÞNxk

Þg~ukj

þ fð~b1þðDxÞNx0
Þð~b1�ðDxÞ0Nx

Þ � ð~a1�ðjÞ þ ~b1�ðDxÞ00Þð~a1þðjÞ þ ~b1þðDxÞNxNx
Þg~uNxj

¼ ð~b1þðDxÞNx0
Þ~c01�ðjÞ � ð~a1�ðjÞ þ ~b1�ðDxÞ00Þ~c01þðjÞ:

ðA:2Þ

We define ~m�jk, ~m
þ
jk and ~l�

j , ~l
þ
j as

~m�jk ¼
ð~b1�ðDxÞ0Nx

Þð~b1þðDxÞNxk
Þ � ð~a1þðjÞ þ ~b1þðDxÞNxNx

Þð~b1�ðDxÞ0kÞ
ð~a1þðjÞ þ ~b1þðDxÞNxNx

Þð~a1�ðjÞ þ ~b1�ðDxÞ00Þ � ð~b1�ðDxÞ0Nx
Þ þ ð~b1þðDxÞNx0

Þ
;

~mþjk ¼
ð~b1þðDxÞNx0

Þð~b1�ðDxÞ0kÞ � ð~a1�ðjÞ þ ~b1�ðDxÞ00Þð~b1þðDxÞNxk
Þ

ð~a1�ðjÞ þ ~b1�ðDxÞ00Þð~a1þðjÞ þ ~b1þðDxÞNxNx
Þ � ð~b1þðDxÞNx0

Þ þ ð~b1�ðDxÞ0Nx
Þ
;

~l�
j ¼

ð~a1þðjÞ þ ~b1þðDxÞNxNx
Þ~c01�ðjÞ � ð~b1�ðDxÞ0Nx

Þ~c01þðjÞ
ð~a1þðjÞ þ ~b1þðDxÞNxNx

Þð~a1�ðjÞ þ ~b1�ðDxÞ00Þ � ð~b1�ðDxÞ0Nx
Þð~b1þðDxÞNx0

Þ
;

~lþ
j ¼

ð~a1�ðjÞ þ ~b1�ðDxÞ00Þ~c01þðjÞ � ð~b1þðDxÞNx0
Þ~c01�ðjÞ

ð~a1�ðjÞ þ ~b1�ðDzÞ00Þð~a1þðjÞ þ ~b1þðDxÞNxNx
Þ � ð~b1þðDxÞNx0

Þð~b1�ðDxÞ0Nx
Þ
;

which simplifies the expression of ~u0j and ~uNxj:
~u0j ¼
XNx�1

k¼1

~m�jk~ukj þ ~l�
j ; ðA:3aÞ
~uNxj ¼
XNx�1

k¼1

~mþjk~ukj þ ~lþ
j : ðA:3bÞ
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A.2. Appendix 2

The structures of the block diagonal matrices ~Hs and ~Hcl are:
; ðA:4Þ
and
: ðA:5Þ
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A.3. Appendix 3

Let us consider the case of a 3D Helmholtz problem in cylindrical coordinates, ðr;u; zÞ, defined on the

domain X ��0; 1� � ½0; 2p½�½�1
2
;þ1

2
�

1

r
o

or
r
ou
or

� �
þ 1

r2
o2u
ou2

þ o2u
oz2

� au ¼ f : ðA:6Þ

The mixed derivatives condition can be applied on the lateral side of the cylinder together with Dirichlet

conditions on the remaining sides

a1
1

r2
o2u
ou2

�
þ o2u

oz2

�
þ b1

ou
or

¼ c1ðu; zÞ at r ¼ 1;

a2�u ¼ c2�ðr;uÞ at z ¼ �1:

ðA:7Þ

Real functions, f ðr;u; zÞ, periodic in u, are approximated by their truncated discrete Fourier series as

f ðri;uk; zjÞ ¼ R
1

Nu

X
06 n<Nu

~fkðri; zjÞeınuk

 !
:

The field u is expanded using Chebyshev polynomial series with classical Gauss–Radau and Gauss–Lobatto
collocation points in the radial and axial directions, respectively. The collocation points in êu are imposed

by the use of the discrete Fourier transform

2ri � 1 ¼ þ cos
2ðNr � iÞp
2Nr þ 1

� �
; i 2 f0; . . . ;Nrg; ðA:8aÞ

zj ¼ � cos
jp
Nz

� �
; j 2 f0; . . . ;Nzg; ðA:8bÞ

uk ¼
2pk
Nu

; k 2 f0; . . . ;Nu � 1g: ðA:8cÞ

Using the following discrete notation ~fðkÞij ¼ ~fkðijÞ, (A.6), (A.7), respectively, become

1

r
o

or
r
o

or

� ��
� k2

r2

�
~uðkÞij þ

o2~uðkÞij
oz2

� a~uðkÞij ¼ ~fðkÞij for k ¼ f0; . . . ;Nu � 1g; ðA:9Þ

and

06 k < Nu
~a1 � k2

r2 ~uðkÞNrj þ
o2~uðkÞNrj

oz2

	 

þ ~b1

o~uðkÞNrj
or ¼ ~c1ðkÞðjÞ at r ¼ 1;

~a2�~uðkÞijNz
0
¼ ~c2�ðkÞðiÞ at z ¼ �1:

8<: ðA:10Þ

Eqs. (A.9) and (A.10) can be reorganised as a set of Nu equations in ðr; zÞ plus the corresponding boundary

conditions. The procedure described in Section 3.2 can then be applied. Owing to the Gauss–Radau grid,

step 3 is simplified, Eqs. (11) and (12), being replaced by

~~a1ðkÞðjÞ
	

þ ~~b1ðDrÞNrNr



~~uðkÞNrj þ

~~b1

XNr�1

m¼0

ðDrÞNrm
~~uðkÞmj ¼ ~~c01ðkÞðjÞ ðA:11Þ

with ~~a1ðkÞðjÞ ¼ ðkzðkÞðjÞ � k2

r2Þ~a1ðkÞðjÞ. The expression of ~~uðkÞNrj as a function of the inner points is straight-
forward.
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